CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation

Yang Zang, Jianping Lei*, Qing Hao, Huangxian Ju

State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China

Abstract

This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin–DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron–hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis.

1. Introduction

Photoelectrochemical DNA bioassays have attracted widespread attention in analytical community owing to its low background signal and excellent sensitivity (Haddache et al., 2014; Zhao et al., 2014). The considerable efforts have been developed to design photoelectrochemical platform based on various nanomaterials such as metal oxide (Lu et al., 2006; Wu et al., 2013), two-dimensional nanosheets (Zhuang et al., 2015), metal nanoparticles (Li et al., 2014; Lu et al., 2008), quantum dots (QDs) (Long et al., 2011) and their nanohybrids (Zhang et al., 2012). Among them, CdS QDs with a narrow gap band of ~2.4 eV has emerged as an attractive photactive material (Gill et al., 2008; Sun et al., 2008; Xiao et al., 2014), showing a visible light-driven photoelectricity activity. However, pure CdS QDs suffers from the rapid recombination of photogenerated electron–hole pairs (Zhang et al., 2015; Zhao et al., 2015), which limits its incident photon to current conversion efficiency. To alleviate this restriction, two different semiconductors with matched energy levels can be employed to enhance the charge transfer rate, resulting in the improved photoelectrochemical performance.

Semiconductor molybdenum disulfide (MoS2), as a typical transition-metal dichalcogenide composed of 2–2–2 triple layers which are bounded by van der Waals forces, has aroused increasing academic interest due to its unique optical, electronic and catalytic properties (Gao et al., 2015; Ou et al., 2014). In particular, MoS2 nanosheets as cocatalyst can accept electrons to accelerate photocatalytic hydrogen evolution within semiconductor-based devices (Bai et al., 2015; Chen et al., 2015). For instance, MoS2 nanosheets-coated TiO2 nanobelt exhibited a desirable photocatalytic hydrogen reaction activity, suggesting the matched energy band of TiO2@MoS2 hybrids favor the suppression of photoelectron–hole recombination (Zhou et al., 2013). When ultrathin MoS2 nanosheets were confined to zero dimensions, the MoS2 QDs would give rise to the interesting physical properties with abundant exposed catalytic edge sites and excellent intrinsic conductivity of monolayer structure (Gopalakrishnan et al., 2015; Ren et al., 2015). However, studies on MoS2 QDs-based biosensing have been less reported owing to the lack of surface functional groups. To expanding its application range, CdS nanocrystals can be integrated by layer-by-layer assembly technique to construct the MoS2 QDs-based heterogeneous structure for developing a versatile photoelectrochemical sensing platform with efficient...
separation of electron–hole pairs.

To further enhance the detection signal, DNA recycling strategies such as catalytic hairpin assembly (CHA) (Qing et al., 2014), hybridization chain reaction (Chen et al., 2012) and rolling circle amplification (Russell et al., 2014) have been employed for DNA bioassays, in which the signal amplification is achieved by allowing a single target DNA to interact with multiple nucleic acid-based signal probes. Among them, owing to the desirable programmability and hundreds-fold signal amplification ability, CHA has been successfully applied in biosensors with fluorophores or redox tags as reporters (Hun et al., 2015; Qian et al., 2015; Song et al., 2015). On the other hand, enzymatic catalysis is also an efficient way to improve the sensitivity. Especially, mimetic catalysts have been extensively investigated as low-cost alternatives of natural enzymes due to the convenient synthesis and high stability (Garai-Ibabe, et al., 2014; Willner et al., 2008; Xu and Dong, 1999). For instance, a facile label-free electrochemiluminescent DNA sensor was designed via target-induced hemin/G-quadruplex switching to catalyze the reduction of dissolved oxygen for signal inhibition (Deng et al., 2013). However, compared to hemin/G-quadruplex, hemin-labeled DNA as an alternative not only remains the high catalytic activity of luminol oxidation in the presence of H$_2$O$_2$, but also shows outstanding designability and adaptability to DNA assembly because of its low steric hindrance, which was favorable to design various bioassay methods for highly sensitive detection of trace analyte (Zhang et al., 2011).

In this work, by integrating the advantages of CdS/MoS$_2$ heterojunction, CHA and hemin-mediated chemiluminescence, we present a novel strategy for photoelectrochemical detection of DNA. As shown in Scheme 1, the capture DNA (C-DNA) was immobilized on CdS/MoS$_2$ modified ITO electrode surface via the amide reaction. In the presence of target DNA (tDNA), the hairpin structure of C-DNA could be opened, and then the dual hemin-labeled DNA probe (HLDP) can initiate CHA recycling, followed by the formation of HLDP:C-DNA duplex on electrode surface. Subsequently, hemin as a mimic enzyme can in situ catalyze luminol oxidation to generate chemiluminescence (CL). Under CL irradiation, photogenerated CdS QDs can produce electron–hole pairs.

With the migration of conduction band (CB) electrons to ITO electrode and the concomitant scavenging of valence band (VB) holes by H$_2$O$_2$, the increased photocurrent was obtained due to the spatial separation of charge carriers. Therefore, based on the high photoelectric conversion efficiency of CdS/MoS$_2$ heterostructure as well as CHA-programmed HLDP:C-DNA duplex as signal probe, the designed biosensor exhibits an excellent performance with desirable selectivity and detection limit down to femtomolar level, showing a promising application in bioanalysis.

2. Experimental section

2.1. Materials and reagents

Indium tin oxide (ITO) electrode was purchased from Zhuhai Kaivo Electronic Components Co. Ltd. (China). Cadmium chloride (CdCl$_2$), thioglycolic acid (TGA), luminol (≥ 97%), 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), N-hydroxysuccinimide (NHS), molybdenum(IV) sulfide (MoS$_2$), ascorbic acid (AA) and monoethanolamine (MEA) were purchased from Sigma-Aldrich. Na$_2$S-C$_9$H$_2$O was obtained from Shanghai Lingfeng Chemical Reagent Co. Ltd. All the other chemicals were of analytical grade without further purification. All aqueous solutions were prepared using ultrapure water obtained from a Millipore water purification system (≥ 18 MΩ, Milli-Q, Millipore). The washing buffer was 10 mM PBS of pH 7.4 containing 300 mM NaCl. The CHA reaction was performed in 20 mM Tris–HCl of pH 7.4 containing 100 mM NaCl and 5 mM MgCl$_2$. All the oligonucleotides were synthesized and purified by TAKARA Biotechnology (Dalian, China) and their sequences are listed as follows:

- Target DNA: 5′-GTGTGCCTTTCAAGATACATCCTGT-3′
- Capture DNA: 5′-NH$_2$-TTTTTTAGCATGGTATTCTGAACGACAC TACCATTGGT CATCGTCT TCAGAATAC-3′
- Hairpin DNA (H-DNA): 5′-GTTATTAAGTTAGTGTTCCTCAAGCTTACGAT-3′
- Dual hemin-labeled DNA (2 HP): 5′-hemin-ACATCACACATTAA TAAC-hemin-3′

![Scheme 1](image)

Scheme 1. Schematic illustration for CdS/MoS$_2$ heterojunction-enhanced photoelectrochemical sensing strategy coupling with CHA and hemin-mediated chemiluminescence.
Label-free DNA probe: 5′-ACATCACATTAATAC-3′
Single-base mismatched DNA (smDNA): 5′-GTGTGCTTCTCCA-
CACCATGCT-3′
Three-base mismatched DNA (tmDNA): 5′-GTGTCACTTCTCCA-
CACAGATGCT-3′

2.2 Apparatus

Transmission electron micrographs (TEM) were performed using a JEM-2100 microscope (JEOL, Japan). Fluorescence (FL) measurements were conducted on a RF-5301PC fluorescence spectrometer (Shimadzu Co. Japan) equipped with a xenon lamp. UV–vis absorption spectra were obtained using a UV–3600 UV–
vis–NIR spectrophotometer (Shimadzu Co. Kyoto, Japan). The CL spectrum was recorded on an IFMM-E Luminescent Analyzer (Remax, China). Photoelectrochemical measurements without excitation light were carried out with a home-built photovoltaic
chemical system. Other photocurrent–time, intensity-modulated
photocurrent spectrophotometry (IMPS) and intensity-modulated
photovoltage spectroscopy (IMVS) measurements were detected
on a Zahner intensity modulated photospectrometer (Zahner,
Germany) with a LW430 light as the accessory excitation source.
Current–voltage (I–V) experiments were performed on a CHI 660D electrochemical workstation (CH Instruments Inc., USA). Electrochemical impedance spectroscopy (EIS) was conducted using a
PGSTAT30/FRA2 system (Autolab, The Netherlands). Then
overnight. Then the electrode was rinsed three times to remove

2.3 Preparation of MoS2 QDs

MoS2 QDs was obtained by liquid exfoliation according to the
reported method with slight modifications (Zhou et al., 2011). Typically, 600 mg of MoS2 powder was added into 200 ml of ethanol/water with ethanol volume fraction of 45%, and then ultra
sonicated for 24 h. The initially formed suspension was thrice
centrifuged at 6000 rpm for 20 min, and filtered through 0.22 μm
ultrafiltration membranes to remove the residual unexfoliated
aggregates. Then the supernatant was collected and concentrated
by ultrasonic cleaning with 10% H2O2, acetone and deionized
2-propanol solution containing 1.0 M NaOH for 15 min, followed by
filtration membranes to remove the residual unexfoliated
aggregates. Then the supernatant was collected and concentrated
by ultrasonic cleaning with 10% H2O2, acetone and deionized

2.4 Construction of photoelectrochemical biosensor

The TGA-capped CdS QDs was synthesized using a previously
reported recipe (Zang et al., 2015). Prior to the fabrication of
designed biosensor, the ITO electrode was immersed in boiling
2-propanol solution containing 1.0 M NaOH for 15 min, followed
by ultrasonic cleaning with 10% H2O2, acetone and deionized
water. The CdS/MoS2 modified ITO electrode was prepared as
follows: first, 10 μL of MoS2 QDs was applied to the ITO electrode
and dried at room temperature. Sequentially, 10 μL of CdS QDs
was dropped onto the electrode to obtain CdS/MoS2 heterogeneous
structure via a non-covalent interaction. The carboxylic group
of QDs was activated using 10 mM PBS buffer of pH 5.3 containing
10 mM EDC and 20 mM NHS for 1 h at room temperature. After
the activated electrode was rinsed with PBS buffer, 20 μL of 1.0 μM
C-DNA was dropped onto electrode surface and incubated at 4 °C
overnight. Then the electrode was rinsed three times to remove
the non-conjugated DNA. Finally, the modified electrode was
blocked with 20 μL of 1 mM MEA for 2 h at 4 °C and rinsed with
washing buffer thoroughly.

2.5 Photoelectrochemical detection of DNA

Similar to the preparation of C-DNA, H-DNA was annealed at
90 °C for 5 min followed by slowly decreasing to room tempera
ture. Then H-DNA and 2HP (1:1 of molar ratio) were incubated for
1 h to form HLDP prior to photoelectrochemical experiments. After
mixing with target DNA, the CHA reaction was triggered at room
temperature for 2.5 h. Finally, the modified electrode was rinsed
with PBS buffer, and the photoelectrochemical signal was recorded
in 0.1 M Tris–HCl buffer of pH 9.0 containing 20 mM H2O2, and
1.0 mM luminol at a constant potential of +0.2 V for DNA detec
tion without deaeration.

3. Results and discussion

3.1 Characterization of MoS2 QDs

Liquid exfoliation technique is a powerful way to break the
weaker interlayer forces in bulk materials to get small nanoparticles
by simple sonication. Considering the broad application of MoS2
nanomaterial in field effect transistor (Choi et al., 2015; Singh
et al., 2014), photocatalysis (Kang et al., 2015) and bioanalysis
(Wang et al., 2014), here, a highly dispersed suspension of MoS2
QDs was prepared by liquid exfoliation method. Compared to bulk
MoS2 (Fig. 1A), the TEM image of MoS2 QDs clearly showed round
morphology with an average size of 3.5 nm (Fig. 1B).

In order to characterize the structural properties of MoS2 QDs,
UV–vis absorption spectrum was recorded for as-prepared sample
(Fig. 1C). The weaker threshold at 390 nm could be assigned to the
direct transition from the deep valence band to the conduction
band (Chikan and Kelley, 2002). In addition, the FL spectrum of MoS2
QDs was measured under 290 nm excitation wavelength (Fig. 1D).
A typical FL emission peak was observed at ca. 419 nm, which was
identical with the result reported in literature (Ha et al., 2014),
confirming the successful preparation of MoS2 QDs.

3.2 Feasibility of photoelectrochemical strategy

Fig. 2A displayed UV–vis spectra of different structural DNA. Compared to the label-free DNA probe (curve a), dual hemin-la
beled DNA showed not only a typical absorption peak of DNA at
260 nm but also a broad absorption peak of hemin at 378 nm (curve b), which was attributed to covalent assembly of DNA and
hemin. When the mixture of H-DNA and dual hemin-labeled DNA
was incubated for 1 h, a clear red shift from 378 nm to 403 nm was
observed as well as an appreciably enhancement of absorption
intensity (curve c). This result could be assigned to the existence
of active monomers of hemin species benefited from the rigid
structure of formed HLDP.

Fig. 2B examined the CL spectrum of HLDP and UV–vis ab
sorption spectrum of CdS QDs. The chemiluminescence, resulted
from hemin-catalyzed luminol oxidation using H2O2 as an oxidant,
had a maximum emission peak at ca. 425 nm (curve a), whereas
CdS QDs showed a broad absorption below 500 nm (curve b). Apparently, the CL spectrum of luminol oxidation and the ab
sorption spectrum of CdS QDs were highly overlapped in a wide
wavelength range, demonstrating luminol-based chemiluminescence
as excitation light could apply to the construction of pho
toelectrochemical biosensor (Golub et al., 2012).
To identify the effect of steric hindrance on the photocurrent, AA was employed to use as electron donor in photocurrent–time experiments (Fig. 2C). As shown in curve a, no photocurrent was observed for MoS$_2$ modified ITO electrode, suggesting MoS$_2$ QDs was not excited under 430 nm irradiation. After modification of CdS QDs, the photocurrent response significantly increased with the excitation of QDs (curve b). However, when C-DNA and MEA were sequentially applied to the electrode surface (curve c), the

Fig. 1. (A) SEM image of bulk MoS$_2$, (B) TEM image, (C) UV–vis and (D) FL spectra of MoS$_2$ QDs. Inset of panel C is the photography of MoS$_2$ QDs solution.

Fig. 2. (A) UV–vis spectra of 2 μM label-free DNA probe (a), dual hemin-labeled DNA (b) and HLDP (c). (B) HLDP-mediated chemiluminescence spectrum of luminol (a) and UV–vis absorption spectrum of CdS QDs (b). (C) Photocurrent responses of MoS$_2$ (a), CdS/MoS$_2$ (b), C-DNA/CdS/MoS$_2$ (c), and HLDP:C-DNA/CdS/MoS$_2$ (d) modified ITO electrodes in PBS buffer of 7.4 containing 0.1 M AA as electron donor. Excitation light: 430 nm. (B) Impedance spectra of MoS$_2$ (a), CdS/MoS$_2$ (b), C-DNA/CdS/MoS$_2$ (c), (c) blocked by MEA (d), and HLDP:C-DNA/CdS/MoS$_2$ (e) modified ITO.
The conductance value was declined owing to the effect of steric hindrance. Likewise, after hybridization with target DNA followed by CHA reaction (curve d), more HLDP was immobilized onto C-DNA/CdS/MoS2 modified ITO electrode, leading to further decrease of photocurrent.

The stepwise fabrication of biosensor was also investigated by EIS (Fig. 2D). For MoS2 modified ITO electrode, the impedance spectrum showed a small R_ct of 237.1 Ω (curve a). When CdS QDs and C-DNA was sequentially immobilized onto MoS2/ITO electrode, the R_ct increased to 342 Ω (curve b) and 506.3 Ω (curve c), suggesting the low conductivity of QDs and the large steric hindrance of DNA. After blocked with MEA, the R_ct value declined to 416.2 Ω because of the electrostatic interaction between the positively charged MEA and the negatively charged redox probe (curve d). Moreover, the value of R_ct significantly increased to 726.2 Ω after the formation of HLDP:C-DNA duplex resulted from target-initiated CHA reaction (curve e), which was demonstrated that the designed biosensor was feasible as expected.

3.3. Characterization of CdS/MoS2 heterojunction

I–V experiments were conducted to confirm the heterojunction configuration of CdS/MoS2 with a potential range of -0.1 to $+1.1$ V at a scan rate of 100 mV s$^{-1}$ (Fig. 3A). The prompt increment of anodic current at CdS/MoS2/ITO electrode (curve b) was observed at potentials higher than 0.8 V compared to that of CdS/ITO electrode (curve a), which can be attributed to the appearance of electrical breakdown, indicating the formation of heterojunction.

In order to better understand the photogenerated electron transfer property of CdS/MoS2, the IMPS and IMVS techniques were meaured under 430 nm light with the intensity of 8 mW cm$^{-2}$. The electron transport time (τ_d) and electron lifetime (τ_e) can be calculated by the expressions $\tau_\text{d} = 1/2\omega f_{\text{IMPS}}$ and $\tau_\text{e} = 1/2\omega f_{\text{IMVS}}$, where f_{IMPS} and f_{IMVS} are the frequency of the minimum IMPS and IMVS imaginary components, respectively (Krüger et al., 2003; Wang et al., 2013). As shown in Fig. 3B, the τ_d of CdS/MoS2/ITO electrode (0.61 ms) was shorter than that of CdS/ITO electrode (0.95 ms), which was assigned to the fast charge transfer of CdS/MoS2 heterojunction. Moreover, the τ_e derived from IMVS reflected the recombination process of phototetrast (Fig. 3C). The average lifetime for CdS (curve a) and CdS/MoS2 modified ITO electrode (curve b) were 115.4 ms and 408.3 ms, respectively. These results suggested the recombination process of electron–hole pairs was inhibited by the formed heterostructure, which is consistent with the IMPS results.

Fig. 3D displayed the typical photocurrent–time curves to further investigate the photoelectrochemical performance of heterojunction-based biosensor. The photocurrent intensity of HLDP:C-DNA/CdS/MoS2 modified ITO electrode (curve b) was 2.8 times higher than that of HLDP:C-DNA/CdS modified electrode (curve a). The enhanced photocurrent effect of CdS/MoS2 heterostructure in present work was better 2.3 times of dual-functional MoS2 sheet-modified CdS branch (Min et al., 2014), which may attribute to the close integration of homogeneously dispersed CdS QDs and MoS2 QDs in contact interface. Overall, the heterojunction-based biosensor could be utilized to detect DNA without external irradiation.

The electron transfer pathway of CdS/MoS2/ITO electrode was illustrated to explain the possible mechanism of enhanced photoelectrochemical activity (Scheme 1). Under irradiation, the separation of electron–hole pairs could occur in CdS QDs, and the reformed band edge in CdS/MoS2 heterojunction would cause the rapid transportation of photogenerated electrons from the VB of CdS QDs to that of MoS2 QDs and then to ITO electrode. Meanwhile, the holes of MoS2 QDs would migrate to the CB of CdS QDs, and can be sacrificed by the donor of H2O2. Obviously, such a synergy effect of CdS/MoS2 hybrids could hasten the spatial charge separation of charge carriers along with enhanced electron transport rate, resulting in the significant improvement of photocurrent response.
3.4. Optimization of detection conditions

To achieve optimal photoelectrochemical response, several experimental parameters including H2O2 concentration, C-DNA concentration, HLDP concentration and incubation time of CHA were investigated (Fig. 4). Because H2O2 served as an electron donor for generation of photocurrent as well as a coreagent for chemiluminescence, the concentration of H2O2 depended largely on the sensitive assay of DNA. The photocurrent was enhanced with the increasing of H2O2 concentration up to 20 mM and then slightly decreased with further addition of H2O2 (Fig. 4A), which was attributed to the surface oxidation of CdS QDs caused by excess H2O2 (Mancini et al., 2008). Thus, 20 mM H2O2 was selected for the next experiments. Similarly, when C-DNA concentration was increased, the photocurrent increased gradually in the range of 0.25–1.0 μM and in turn declined with the further increasing of C-DNA (Fig. 4B), indicating that high concentration of C-DNA could reduce the efficiency of DNA hybridization resulted from steric hindrance (Zhang et al., 2006). Therefore, 1.0 μM C-DNA was employed for the construction of biosensor.

To investigate the effect of the concentration of HLDP acting as CHA primer on biosensor performance, 0.1 nM target DNA was mixed with HLDP at different concentrations ranging from 0 to 400 nM. As shown in Fig. 4C, the photocurrent signal increased significantly and then tended to a plateau at 300 nM, suggesting the saturated binding of C-DNA to HLDP. Thus, 300 nM HLDP was selected for catalytic hairpin assembly. Moreover, the incubation time of CHA on modified electrode surface was also optimized (Fig. 4D). When the incubation time was more than 2.5 h, no obvious photocurrent change was observed, indicating CHA reaction
nearly reached the maximum. So, 2.5 h was chosen as the optimal reaction time.

In addition, the applied potential was also an important parameter for photocurrent generation. With the increasing potential from +0.1 to +0.3 V, a significant increase of photocurrent was obtained. Since the photocurrent at +0.2 V was 87% of that at +0.3 V, providing enough sensitivity for DNA detection. Thus, +0.2 V was chosen for next experiments.

3.5. Analytical performance

Under optimized conditions, the CdS/MoS2 heterojunction-based biosensor could be conveniently used for DNA detection. As shown in Fig. 5A, with the increasing target DNA concentration, the photocurrent intensity increased gradually, indicating that the formed HLDP:C-DNA duplex could produce luminol chemiluminescence to facilitate the excitation of CdS QDs. The calibration plot of photocurrent intensity versus the logarithm of target DNA concentration from 1 fM to 100 pM showed a good linearity (Fig. 5B). The linear range was wider than that of photovoltaic biosensor by means of catalase mimetics of bio-barcode modified Mg2+-dependent DNAzyme (0.2 pM–1 nM) (Wang et al., 2015), fluorescence biosensor via CHA-programmed Mg2+-dependent DNAzyme (0.5 pM–20 nM) (Liu et al., 2015), and chemiluminescence biosensor based on exonuclease III-mediated cascade amplification (10 fM–1 pM) (Gao and Li, 2014). The regression equation was $I_{\text{ph}} = 85.10 + 49.09 \log C$ (FM) with a correlation coefficient of 0.997, where I is the photocurrent of the biosensor and C is the concentration of target DNA. The detection limit was estimated to be 0.39 FM at 3σ, which was much lower than 9 FM of hybridization chain reaction-based photoelectrochemical amplification (Li et al., 2015). 92 FM of exonuclease III-assisted target recycling and CHA-based electrochemical method (Tao et al., 2015), and 81 FM of target-triggered quadruple amplification-based colorimetric methods (Wu et al., 2015). Apparently, the CdS/MoS2 modified electrode with excellent photoelectricity activity is a promising sensing platform for DNA bioanalysis.

The selectivity of the designed biosensor was evaluated by the photocurrent toward blank and other DNA samples such as tDNA, smDNA and tmDNA (Fig. 5C). As expected, the photoelectrochemical measurements showed obvious photocurrent response to tDNA, which was 3.0-, 4.1- and 6.4-fold higher than that of smDNA, tmDNA and blank samples, respectively. These results indicated the proposed biosensor was highly selective for tDNA against base mismatched sequences owing to the specific bior-recognition of DNA hybridization followed by CHA reaction.

4. Conclusions

This work was successfully constructed a highly efficient CdS/MoS2 heterojunction-based photoelectrochemical sensing platform for ultrasensitive detection of DNA via CHA and dual hemin-induced chemiluminescence amplification. The formation of heterojunction through contact of two quantum dots could retard the recombination of electron–hole pairs, resulting in 280% enhancing of photocurrent. This observation was related to the fast transfer rate and the long lifetime of photogenerated carriers in CdS/MoS2-based detection system. In the presence of target DNA, C-DNA could initiate CHA reaction to product HLDP:C-DNA as signal probe on electrode surface, leading to the significant enhancement of photocurrent under amplified chemiluminescence excitation. Considering the high photoconversion efficiency of CdS/MoS2 heterojunction, the biosensor showed favorable performance with wide linear range, excellent sensitivity and desirable selectivity. The two semiconductor-based heterostructure provides a universal platform for the construction of photoelectrochemical devices in ultrasensitive bioanalysis.

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (21375060, 21135002, 21212091) and Priority development areas of National Research Foundation for the Doctoral Program of Higher Education of China (2013009130005).

References