Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing

Lina Wu, Jianping Lei, Xueji Zhang, Huangxian Ju

A biofunctional hybrid nanocomposite of carbon nanofiber (CNF) with water-soluble iron(III) meso-tetrakis(N-methylpyridinum-4-yl) porphyrin (FeTMPyP) was designed via non-covalent interaction for preparation of highly sensitive ethanol biosensor. The prepared nanocomposite showed good dispersion in water and was characterized with steady-state electronic absorption spectroscopy and scanning electron microscope. The nanocomposite combined the good conductivity of CNF and the excellent catalytic activity of both CNF and FeTMPyP toward the reduction of dissolved oxygen, producing a method for amperometric detection of oxygen ranging from 6.5 nM to 6.4 µM at a low overpotential. The nanocomposite modified electrode was further used for assembly of alcohol oxidase to construct an amperometric biosensor for ethanol. The biosensor showed rapid and highly sensitive response to ethanol with a linear range from 2.0 µM to 112 µM. The immobilized alcohol oxidase also showed its direct electrochemistry. The biofunctional nanocomposite provides a new way to not only construct the highly sensitive biosensors but also mimic the catalytic activity of enzyme in the life process.

© 2008 Elsevier B.V. All rights reserved.
2. Materials and methods

2.1. Material

CNF was a gift from WPI (Sarasota, USA). AOx (from Hansenula polymorpha, 20–40 U mg⁻¹) and poly(vinyl alcohol) (PVA) were purchased from Sigma. Water-soluble FeTMPyP was prepared according to the method reported previously (Pasternack et al., 1977; Bediou et al., 1993). Other reagents were of analytical reagent grade. All solutions were prepared with twice-distilled water. The buffer for the assay was 0.2 M phosphate buffer saline (PBS), prepared by mixing stock standard solution of K₂HPO₄ and KH₂PO₄. The O₂-saturated standard solution was prepared for the amperometric experiments by bubbling double distilled water with pure O₂ at room temperature for 1 h, in which the O₂ concentration was 2.6 × 10⁻⁴ M calculated from its saturated solubility.

2.2. Preparation of AOx/CNF–FeTMPyP/GCE

The GCE was successively polished to a mirror finish using 0.3 μm and 0.05 μm alumina slurry (Beuhler) followed by rinsing thoroughly with twice-distilled water. After successive sonication in 1:1 nitric acid, acetone and twice-distilled water, the electrode was rinsed with twice-distilled water and allowed to dry at room temperature. This whole process could wash off the impurity adsorbed on the electrode surface. The assembly of CNF–FeTMPyP was achieved by adding 25 mg CNF to 5 ml of 2 mg ml⁻¹ FeTMPyP solution and then sonicating for 30 s at room temperature, followed with vigorously vibrating for 30 min. The resulting suspension was then centrifuged for 10 min at 10,000 rpm to remove the free FeTMPyP. The obtained solid was resuspended in water with vigorously vibrating for 10 min and centrifuged again to wash out any unbound porphyrin. The as-prepared nanocomposite was resuspended in water for carrying out different experiments. 3.0 μl of CNF–FeTMPyP nanocomposite was dropped on a pretreated GCE and dried in a silica gel desiccator to obtain CNF–FeTMPyP modified electrode. 3.0 μl of 10 mg ml⁻¹ AOx in PBS was dropped on the CNF–FeTMPyP modified electrode and dried in a silica gel desiccator for 30 min. Then 3.0 μl of 1% with poly(vinyl alcohol) solution was dropped on the membrane to obtain the amperometric biosensor for ethanol.

3. Results and discussion

3.1. Characterization of CNF–FeTMPyP

FeTMPyP is water-soluble cationic porphyrin with π–π conjugated macrocycle on the porphin ring (inset in Fig. 1). After CNF was added to FeTMPyP solution followed with sonication and vibrating, the interaction between FeTMPyP and CNF via non-covalent π–π stacking resulted in the formation of CNF–FeTMPyP nanocomposite. The formed hybrid nanocomposite showed good dispersion in water, and no precipitation of CNF was observed after the resulted suspension stored for three months. The formation could be demonstrated with steady-state electronic absorption spectroscopy and scanning electron microscope (SEM). The typical absorption spectrum of FeTMPyP showed an intense Q band absorption at 422 nm and two less intense Soret bands at 598 nm and 640 nm (curve a, Fig. 1). Compared to free FeTMPyP, the CNF–FeTMPyP showed more complicated absorption (curve b, Fig. 1). The Soret band was broadened and red-shifted from 422 nm to 458 nm, while two Q bands blue-shifted to 537 nm and 583 nm. More interestingly, a new peak clearly appeared at 506 nm, which was attributed to J-type aggregate of FeTMPyP nucleated on CNF face. This peak was responsible for assembling porphyrin in an orderly fashion and mimicking the catalytic activity of enzyme for life science research.
Fig. 2. Scanning electron micrographs of electrode coated with CNF–FeTMPyP at different amplifications.

From the SEM image of CNF–FeTMPyP nanocomposite its diameter was in the range of 30–50 nm (Fig. 2), which was similar to that of CNF used in our previous works (Hao et al., 2007; Wu et al., 2007a). Thus the assembly of FeTMPyP on CNF did not obviously increase the size of CNF. However, the SEM image showed good dispersion of the hybrid nanoparticle on sampling support due to its high solubilization in aqueous solution, suggesting that the CNF surface was covered by cationic FeTMPyP. This homogeneous and porous nanostructure provided a significant increase of effective electrode surface for loading of biomolecules.

3.2. Voltammetric behavior of nanocomposite and optimization condition for its preparation

The cyclic voltammogram of FeTMPyP modified electrode in oxygen-free pH 7.0 PBS showed a couple of weak redox peaks at −0.263 V and −0.149 V (ΔE_p = 114 mV) at 0.01 V s^{-1}, while the redox peaks of the immobilized CNF–FeTMPyP occurred at −0.184 V and −0.130 V (ΔE_p = 54 mV) (curve a, Fig. 3). These peaks were attributed to the direct electron transfer between FeTMPyP and electrode. The decrease of ΔE_p indicated the formation of hybrid nanocomposite led to faster electron transfer rate due to the presence of CNF, which was consistent with the result of steady-state electronic absorption spectroscopy.

In air-saturated pH 7.0 PBS the cyclic voltammogram of FeTMPyP modified electrode showed the electrocatalytic ability towards reduction of dissolved oxygen, which resulted in dramatic increase of the reduction peak of FeTMPyP and decrease in the oxidation peak (curve b, Fig. 3A). In comparison of Fig. 3B(a) with Fig. 3B(b) the reduction of oxygen proceeded along with the reduction of Fe^{III}TMPyP. The dramatic increase of the reduction peak of FeTMPyP at CNF–FeTMPyP modified electrode also showed a typical EC catalytic regeneration mechanism (Bard and Faulkner, 2001). This could be demonstrated from the cyclic voltammogram of CNF–FeTMPyP modified electrode in oxygen-saturated solution, in which the oxidation peak disappeared. The appearance of oxidation peak of FeTMPyP in Fig. 3B(b) was due to the low oxygen concentration in solution and high content of FeTMPyP in CNF–FeTMPyP nanocomposite. The electrocatalytic reduction of dissolved oxygen at CNF–FeTMPyP modified electrode started at the potential of about +0.150 V, close to its physiological reduction potential in biological systems (Boultatov et al., 2002), and the reduction peak occurred at −0.060 V, which was more positive than those of −0.278 V at FeTMPyP modified electrode and −0.310 V at an acid-treated CNF modified electrode (Wu et al., 2007b). Thus, the CNF–FeTMPyP nanocomposite had a synergy effect of CNF and FeTMPyP for electrocatalyzing or accelerating the reduction of dissolved oxygen.

In order to obtain excellent performance for analytical purpose, the preparation of CNF–FeTMPyP nanocomposite was firstly optimized. At the FeTMPyP concentration of 2 mg ml^{-1}, with increasing amount of CNF mixed in the solution for preparation of the nanocomposite, the electrocatalytic reduction potential of dissolved oxygen shifted positively and peak current increased. At the amount of 5 mg CNF mixed in 1.0 ml FeTMPyP solution the reduction potential reached the most positive value, and the reduc-
tion current was also maximum, indicating a saturated coverage of CNF by FeTMPyP. On the other hand, when 5 mg CNF was mixed to 1.0 ml FeTMPyP solution, with the decreasing FeTMPyP concentration from 2 mg ml\(^{-1}\), the reduction current decreased. When the FeTMPyP concentration was higher than 2 mg ml\(^{-1}\), more free FeTMPyP could be monitored by UV–vis absorption at 422 nm\(^{-1}\). Thus 2 mg ml\(^{-1}\) FeTMPyP solution with 5 mg CNF for 1.0 ml FeTMPyP solution was used for the preparation of CNF–FeTMPyP nanocomposite.

The amount of FeTMPyP adsorbed on the CNF–FeTMPyP modified electrode could be evaluated from the anodic or cathodic peak area of Fe(III)TMPyP/Fe(II)TMPyP redox couple. The value was estimated to be 4.5 \times 10^{-9} \text{ mol cm}^{-2}, which was larger than those of 2.7 \times 10^{-8} \text{ mol cm}^{-2} hemin/MWNTs modified electrode (Ye et al., 2004), and much larger than the monolayer coverage of FeTMPyP molecules. This was obviously due to a mass of FeTMPyP molecules in the hybrid nanocomposite.

3.3. Amperometric sensing of dissolved oxygen

Fig. 4 displays the steady-state amperometric response of the CNF–FeTMPyP modified electrode to dissolved oxygen at an optimal applied potential of \(-0.20\) V. The current–time curve clearly illustrated that the modified electrode could respond very rapidly to the change in the O\(_2\) concentration, producing steady-state signals within 5 s. The response displayed a linear O\(_2\) concentration range from 6.5 nM to 6.4 \mu M with a correlation coefficient of 0.999 and a slope of 714.7 nA \mu M\(^{-1}\). The limit of detection was 1.1 nM at \(0.20\) V. Upper inset: Amplified response curve. Lower inset: Calibration curve.

![Fig. 4](Image 106x626 to 314x773)

Fig. 4. Typical steady-state current response of the CNF–FeTMPyP modified electrode to successive addition of different volumes of oxygen-saturated solution into nitrogen-saturated pH 7.0 0.2 M PBS. Applied potential, \(-0.20\) V. The response displayed a linear O\(_2\) concentration range from 6.5 nM to 6.4 \mu M with a correlation coefficient of 0.999 and a slope of 714.7 nA \mu M\(^{-1}\). The limit of detection was 1.1 nM at \(0.20\) V. Upper inset: Amplified response curve. Lower inset: Calibration curve.

3.4. Amperometric biosensing of ethanol

Based on the highly catalytic activity and biocompatibility of the CNF–FeTMPyP hybrid nanocomposite, an ethanol biosensor was fabricated by further immobilizing AOx with PVA to the surface of CNF–FeTMPyP modified electrode. The resulting modified electrode showed two couples of stable and well-defined redox peaks (Fig. 5). The redox peaks located at couple of \(-0.189\) and \(-0.117\) (\(\Delta E_P = 72\) mV) were also attributed to the direct electron transfer between FeTMPyP and electrode. The slightly increasing peak-to-peak separation was due to the presence of PVA, which slowed the electron transfer rate. Interestingly, the electrode showed the direct electrochemistry of AOx with the redox potentials of \(-0.408\) V and \(-0.464\) V, which has never been directly observed probably due to steric hindrances and large reaction barriers (Azevedo et al., 2005). Thus CNF provided a microenvironment for preserving the natural structure and accelerating the electron transfer of the immobilized redox proteins. The ratios of reduction to oxidation peak currents of the two couples of peaks were about 1:1 in oxygen-free PBS, furthermore, the peak currents increased linearly and the peak potentials showed a small shift with the increasing scan rate from 10 mV s\(^{-1}\) to 100 mV s\(^{-1}\), indicating two surface-controlled electrode processes.

Almost all AOx-based ethanol amperometric sensors developed so far are based on the monitoring of O\(_2\) consumption at \(-600\) mV or H\(_2\)O\(_2\) formation at \(+600\) mV in AOx enzymatic cycle. This work was also based on monitoring O\(_2\) consumption with AOx/CNF–FeTMPyP modified electrode. Firstly ethanol was selectively oxidized by oxygen in AOx enzymatic cycle, which decreased the oxygen concentration. And then the O\(_2\) consumption was monitored by the electrochemical signal of oxygen reduction at CNF–FeTMPyP modified sensor surface. The excellent catalytic activity of both CNF and FeTMPyP toward the reduction of dissolved oxygen and good selectivity of AOx resulted in highly selective and sensitive amperometric response to ethanol at a low overpotential of oxygen reduction. The low reduction potential was an advantage for excluding the interference of other coexisted species.

As shown in Fig. 6, upon additions of ethanol aliquots to static air-saturated pH 7.0 PBS the chronocoulometric curves showed decreasing response. The current reached quickly the steady value, the time reaching 95% of the steady value was less than 10 s, which was much faster than those of 120 s at AOx/gelatin modified electrode (Akyliz and Dinçkaya, 2005) and 30–50 s at AOx/polynylferrocenium modified electrode (Gilce et al., 2002), as shown in Table S1 in supporting information. The biosensing response decreased linearly in the ethanol concentration range from 2.0 \mu M to 112 \mu M. The sensitivity was 1.93 nA \mu M\(^{-1}\) with a detection limit of 1.2 \mu M, which was much lower than those (Table S1 in supporting information) of 30 \mu M for AQx/chitosan...
at an eggshell membrane-based biosensor with response time of 60 s (Wen et al., 2007) and 80 μM for graphite–teflon composite bienzyme amperometric biosensor with response time of 115 s (Guzmán-Vázuez de Prada et al., 2003), and 540 μM for microseparation chips based on performing multienzyme dehydrogenase/oxidase assays (Wang et al., 2001). The detection limit was also lower than that obtained at alcohol dehydrogenase/CNF modified electrode by monitoring the electrocatalytic oxidation current of NADH (Wu et al., 2007a). More importantly, the detection process had no the need of stirring, which is advantageous for in situ monitoring of ethanol.

Since the biofunctional CNF–FeTMPyP modified electrode provided the advantage for detecting oxidase substrate at a low reduction potential (~0.2 V vs. SCE), some common interference such as ascorbic acid and lactic acid (as antioxidants), citric acid, acetic acid and cane sugar (as flavorings) in real samples could be excluded. At 200 μM interferers, the decrease in O2 consumption were equivalent to those of 4.0 ± 0.03, 1.5 ± 0.01, 2.9 ± 0.02, 1.1 ± 0.01, 1.7 ± 0.02 μM of ethanol (Table S2 in supporting information), respectively, showing slight interferences. The much lower concentrations of these interferents than ethanol in usual samples such as beers and liquors indicates good practicability of the biosensor. The analysis of ethanol was carried out in beer without any need of sample pretreatment except a dilution step. The concentration of ethanol in beer was determined to be 0.70 M or 4.14% (v/v), which was consistent with the given value of 4.14% (v/v). The recovery tests were performed by adding 20 μM 4.1 of ethanol to ethanol was observed after 20 days of storage. After 30 days the response current was still retained at 91% value of the initial response. This implied that the three-dimensional structure of the AOx/CNF–FeTMPyP membrane was very efficient for retaining the bioactivity of ethanol oxidase and preventing it from leaking out of the sensor.

4. Conclusions

A biofunctional nanocomposite of CNF–FeTMPyP was conveniently prepared through π–π non-covalent interaction without any treatment. The hybrid nanocomposite possesses good dispersion in water and accelerates the electron transfer of FeTMPyP at electrode. Both the FeTMPyP and CNF in the nanocomposite prompt the electron transfer between dissolved oxygen and electrode and show a synergic effect in electrocatalysing the reduction of oxygen. The nanocomposite realizes for the first time the direct electron transfer of AOx. Based on the excellent electrocatalytic activity toward oxygen reduction, a biosensor for ethanol was constructed by immobilizing AOx on CNF–FeTMPyP modified electrode. The biosensor shows rapid and highly sensitive amperometric response to ethanol at a low reduction potential without need of stirring. Thus, the hybrid nanocomposite of carbon nanofiber with water-soluble porphyrin provides an attractive insight as a functional electrocatalyst to construct sensitive biosensor and mimic the catalytic behaviors of enzyme in biological systems.

Acknowledgements

This project was supported by the funds for Creative Research Groups (20521503), Major Research Plan (90713015), Key Program (20535010) and General Program (20705012) from NNSFC, PhD Fund of MOE for Young Teachers (20070284052) and the Science Foundation of Jiangsu (BK2007570).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bios.2008.06.009.

References